The authors consider the regression models, main tool of economic functions’ research and forecasting, for the purpose of researching the estimations of regression parameters obtained by least square method. The estimations are unbiased,
consistent and efficient. Because the available bibliography provided the consistency proofs solely for simple linear regression (unifactor), the authors have attempted to prove the consistency of linear regression coefficients estimations for multidimensional case.
Keywords: multiple linear regression; economic functions forecasting; regression model formulation; least square method; linear regression coefficient estimations’ consistency.
References
- Vukolov E. A. Osnovy statisticheskogo analiza (Basics of Statistical Analysis), M., Forum, INFRA-M, 2004, 462 p., il., Professional’noe obrazovanie.
- Chernova N. I. Lektsii po matematicheskoi statistike (Lectures on Mathematical Statistics), Novosibirsk, NGU, 2003, 179 p.
- Bhatia R. Positive Definite Matrices, Princeton, Princeton University Press, 2015, 240 p., Princeton Series in Applied Mathematics.
- Sbornik zadach po matematike dlya vtuzov [v 4 ch.] (Math Problem Book for Technological Colleges [in 4 parts]), Pod red. A. V. Efimova, V. S. Pospelova, Ch. 1, M., Izd-vo Fiziko-matematicheskoi literatury, 2003, 288 p., il.
- Bugrov Ya. S., Nikol’skii S. M. Elementy lineinoi algebry i analiticheskoi geometrii (Elements of Linear Algebra and Analytic Geometry), 2-e izd., pererab. i dop., M., Nauka, 1984, 190 p., il., Vysshaya matematika.
- Ovsyannikov A. Ya. Lineinaya algebra (Linear Algebra), Ekaterinburg, Izd-vo Gumanit. un-ta, 2004, 293 p.